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Abstract
We investigate the single-photon double ionization of molecular hydrogen
theoretically over a wide range of photon energies. Our numerical approach
is based on the half-collision picture of single-photon multiple ionization and
employs a mixed quantum-classical method that splits the double ionization
process into a shake-off and a knockout part. We demonstrate that this approach,
which has been applied to the double photoionization of helium before, can be
successfully extended to the case of molecular target systems with two separate
nuclei. The treatment given here allows for both a computationally simple way
of calculating molecular double photoionization in reasonable agreement with
experiment and recent ab initio calculations, and a physical understanding of
the results in terms of a simple quasiclassical picture.

1. Introduction

The ionization of an atom or molecule by a single photon is arguably one of the cleanest
ways to study the correlated dynamics of N-body Coulomb systems: the perturbation of the
target is limited to an infinitely short time span and transfers a precisely controlled amount
of energy, while the subsequent evolution of the system is purely governed by the Coulombic
forces between the particles. Nevertheless, the quantum-mechanical description of such a
process remains a difficult task: time-independent methods [1], where the dipole matrix
element

〈
ψf

∣∣∑
i zi

∣∣ψi

〉
corresponding to first-order perturbation theory for the photon–atom

or photon–molecule interaction is calculated, usually suffer from the fact that adequate final-
state wavefunctions ψf taking proper account of interelectronic correlations are not known.
Time-dependent methods such as close-coupling calculations [2] or approaches based on
complex scaling [3], on the other hand, require a huge numerical effort, especially if dealing

0953-4075/05/132297+14$30.00 © 2005 IOP Publishing Ltd Printed in the UK 2297

http://dx.doi.org/10.1088/0953-4075/38/13/021
mailto:siedschlag@amolf.nl
http://stacks.iop.org/jb/38/2297


2298 C Siedschlag and T Pattard

with molecules, where important symmetries that simplify the calculation in the atomic case
are no longer present.

An attractive alternative to these computationally intensive methods has arisen in the
form of approximate semiclassical or mixed quantum-classical approaches to the photon-
excited many-body Coulomb dynamics based on simple physical pictures. In [4] the single-
photon double ionization of helium has been treated by separating the photoionization process
into the absorption of a photon by one of the two electrons (which was described quantum
mechanically) and the subsequent single or double ionization event due to the correlated
motion of the electrons (which was described classically). The ratio of double to single
ionization was calculated over a wide range of photon energies, showing a good agreement
with experiment. This was even more remarkable since the phase-space distribution used in
that work was restricted to one spatial dimension.

An extension to this approach has been developed by Schneider et al [5, 6], who used
the Wigner transform of a simple ansatz for the helium groundstate to calculate the statistical
weights of the individual classical trajectories. Moreover, the so-called PEAK approximation
which requires the photon absorption process to happen exclusively when one of the two
electrons is at the nucleus restricted the integration over all initial conditions so that a three-
dimensional treatment became numerically feasible. In addition, the approach has been
extended to allow for the possibility of shake-off ionization, which was not included in the
simpler treatment of [4]. The results from the calculations in [5] were in very good agreement
with experiments, both for total and for singly differential cross sections. A first extension of
this approach to three-electron atoms has been carried out recently [7].

Thus, the purpose of the present work is twofold. Methodically, we will show how to
carry the ansatz of Schneider et al over to diatomic molecules by suitable modification and
generalization of the approach. Application to the case of H2 provides valuable further insight
into the range of validity of approximate quasiclassical methods and, more generally, intuitive
physical concepts such as the half-collision picture of single-photon multiple ionization
described below. On the other hand, being the simplest possible two-electron molecule,
H2 can serve as a fundamental benchmark system for both numerical methods and physical
understanding of correlated two-electron ejection from molecular targets in the same way that
helium has become the paradigm system for the atomic case. Still, work on this system has
been limited, possibly due to the increased complexity of the molecular system compared to
atoms, and very few theoretical calculations of total cross sections have been reported. Early
work by Le Rouzo [8, 9] has resulted in cross sections significantly larger than measured
experimentally [10, 11], and first fully correlated ab initio calculations are only just emerging
[2, 3]. Sadeghpour and Dalgarno [12] investigated the high-energy shake-off limit, but
provided no data for finite photon energies. Hence, the second purpose of the present work
is to provide the total double ionization cross section of H2 over a wide range of energies
extending from threshold up to several hundred eV excess energy, i.e. to the region above the
cross section maximum where so far neither experimental nor theoretical results have been
available, hoping that the present results will stimulate further studies in this energy range.

2. Model

2.1. General

The basic method we use for the calculation of the double ionization probability is described
in great detail in [6] in the form applicable to atomic targets. For molecular targets, several
new issues arise. The method is based on the so-called half-collision picture [6, 13–15] of
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the double ionization process. Samson [13] observed that the ratio of double photoionization
cross section to photoabsorption of a neutral atom is, over a wide energy range, proportional
to the electron-impact single ionization cross section of the corresponding singly-charged ion.
This led him to propose that double ionization by single-photon absorption could be viewed as
a two-step process, namely the primary step of photon absorption by one electron followed by
the secondary step of energy transfer from the photoelectron to the other, secondary electron.
The latter step should be analogous to an electron impact ionization process, with the difference
that the ‘projectile’, i.e. the photoelectron, is created inside the target. Hence, it corresponds
to a half-collision, where the incoming half of the projectile trajectory is missing. However,
in this form the picture does not include shake-off, a process which relies on the fact that
initial and final states of the secondary electron are eigenstates of different Hamiltonians in
the photoionization case, i.e. that the groundstate of the neutral atom is not orthogonal to the
continuum of the singly-charged ion. Hence, shake-off is present in photoionization, but not in
electron impact ionization. To this end, the half-collision picture has been extended by Pattard
and Burgdörfer [14] by explicitly introducing an additional term to allow for shake-off. Such
an approximate separation of shake-off and half-collision (or knockout) has also been used by
Schneider et al [5], who showed that the approach leads to surprisingly good results for the
description of single-photon double ionization of helium from the ground [6, 5] and also from
excited [16] states. Later on, further insight into the foundation of the half-collision approach
has been obtained in [15]. In the present work, we will thus follow the reasoning developed in
[6, 14, 15] and employ an incoherent summation of shake-off and half-collision contributions
to the double ionization. The modifications and generalizations of the ‘standard’ procedure
described in [6] which are necessary for the molecular case will be developed in the following
subsections.

2.2. Shake-off

It is well known that the ratio of double to single ionization following single-photon absorption
does not go to zero in the high photon energy limit, but rather approaches a finite constant, the
so-called shake-off limit. For two-electron atoms or ions, the corresponding expression has
been given, e.g., by Åberg [17]:

σ 2+

σ +

Eph→∞−→ Oc

N − Oc

(1)

or
σ 2+

σ abs

Eph→∞−→ Oc

N
, (2)

where

Oc :=
∫

|〈φf |ψi(r, 0)〉|2 df (3)

and

N := 〈ψi(r, 0)|ψi(r, 0)〉 (4)

are the overlap with the continuum and the normalization, respectively, of the wavefunction
of the secondary electron after the primary electron has absorbed a photon, which takes place
at the nucleus in the high-energy limit. Here, ψi is the (ground) initial state of the full two-
electron system and the φf are the continuum eigenstates of the corresponding one-electron
Hamiltonian. In the following, we will derive the corresponding expression for H2. The
mathematical treatment closely follows the analysis of Kabir and Salpeter [18] for the atomic
transition matrix elements.
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Within the usual dipole approximation, the amplitude for a transition from the initial state i
to a final state f by absorption of a single photon is proportional to the corresponding dipole
matrix element

af i ∝ 〈ψf |ε · (∇r
+ ∇r

)|ψi〉, (5)

where ε is the polarization direction of the photon. For large photon energies, at least one
of the electrons will be high in the continuum after the photoabsorption and, hence, is well
described by a simple plane wave with wavevector k

ψf → φf (r) eik·r + eik·rφf (r), (6)

where we have assumed that the system is in a singlet state so that the spatial part of both
initial and final states is symmetric under exchange of electrons3. Using the symmetry of ψi

under electron exchange, this leads to

af i ∝ 2〈φf (r) eik·r |ε · (∇r
+ ∇r

)|ψi〉. (7)

By Fourier transformation, this can be written in momentum space as

af i ∝ 2i
√

4πk〈φ̃f (p)|ε · (p + k)|ψ̃ i(p, k)〉
k→∞−→ 2i

√
4πk(ε · k)〈φ̃f (p)|ψ̃ i(p, k)〉 ≡ 2itf i , (8)

demonstrating that for large k the ‘exchange term’ where one electron absorbs the photon and
the other leaves with a high velocity becomes negligible compared to the direct term. Using
the Schrödinger equation in momentum space to replace ψ̃ i in equation (8) as in [18], the
leading order in 1/k becomes

tf i → −2ε · k

π3/2k7/2

∫ ∫
φ̃∗

f (p)[e
i(s−k)·RAψ̃ i(p, s) + ei(s−k)·RB ψ̃ i(p, s)] ds dp, (9)

where RA and RB are the position vectors of the two nuclei. An inverse Fourier transformation
then leads back to coordinate space, and with R = RA − RB we obtain

tf i → −2ε · k
π3/2k7/2

e−ik·(RA+ RB)/2(e−ik·R/2〈φf (r)|ψi(r, RA)〉+ eik·R/2〈φf (r)|ψi(r, RB)〉).
(10)

As in the atomic case, the asymptotic Fourier transform picks out the singularities of the
Coulomb potential [19] or, physically speaking, photoabsorption takes place at one of the
nuclei which has to take the recoil to balance the electronic momentum. In the present case,
however, there are two nuclei and photoabsorption can take place at either one of them, the
transition amplitude is a coherent summation of both processes which in general have different
phases associated with each other. The transition probability thus contains an interference
term

Pf ∝ (ε · k)2

k7
(|〈φf |ψiA〉|2 + |〈φf |ψiB〉|2 + 2 cos(k·R)〈φf |ψiA〉〈φf |ψiB〉), (11)

where we have introduced the short-hand notation ψiA = ψi(r, RA), etc.
Equation (11) describes the probability for the transition to a specific two-electron final

state ψf = φf eik·r . For the probability that the secondary electron ends up in a—bound or

3 The careful reader will also note that there is a slight ambiguity in our notation, since f labels both the two-electron
final state ψf and the one-electron final state φf . Clearly, there is no one-to-one correspondence, by varying k
different ψf can contain the same φf . However, in order to keep the notation simple we do not distinguish the
corresponding indices, since the meaning should be clear in all cases. The same applies for the bra–ket notation
where we do not distinguish between one- and two-electron integrals.
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continuum—one-electron final state φf , we have to integrate over the emission direction k̂ of
the photoelectron. For the first two terms of equation (11), this leads to∫

(ε · k̂)2(|〈φf |ψiA〉|2 + |〈φf |ψiB〉|2) d�k = 4π

3
(|〈φf |ψiA〉|2 + |〈φf |ψiB〉|2) ∝ k0. (12)

For the interference term, on the other hand, we have∫
(ε · k̂)2 cos(k·R) d�k = 2π

k3R3
(k2R22(ε · R̂)2 sin(kR) + kR cos(kR)(6(ε · R̂)2 − 2)

− (6(ε · R̂)2 − 2) sin(kR))

k→∞−→ 4π(ε · R̂)2 sin(kR)

kR
∝ k−1. (13)

Hence, the contribution of the interference term decays faster than that of the other two, and
the high-energy limit of the transition probability corresponds to an incoherent addition of two
processes, namely photoabsorption at nucleus A and at nucleus B, respectively

P
(1)
f

k→∞−→ const
1

k5
(|〈φf |ψiA〉|2 + |〈φf |ψiB〉|2). (14)

(At this point we have introduced the superscript (1) to explicitly emphasize that we are
dealing with the probability of a one-electron final state φf of the secondary electron.)
This finding is in contrast to the expression given by Sadeghpour and Dalgarno [12], whose
equation (3a) corresponds to a coherent summation of the two possibilities. (Note, however,
that their equation (3b) is identical to our equation (15))

In order to calculate the ratio of double to single ionization, the constant prefactors in
equation (14) and the preceding equations are not needed, since we can make use of a sum
rule. Summing over all bound and continuum final states φf , we obtain

∑∫

f

P
(1)
f = const

1

k5
(〈ψiA|ψiA〉 + 〈ψiB |ψiB〉). (15)

Hence, the shake-off limits for the ratio of double to single ionization and for double ionization
to photoabsorption retain the form of equations (1) and (2), respectively, with the modified
expressions

Õc =
∫

(|〈φf |ψiA〉|2 + |〈φf |ψiB〉|2) df (16)

and

Ñ = 〈ψiA|ψiA〉 + 〈ψiB |ψiB〉 (17)

for overlap and normalization.

2.3. Half-collision

In principle, the half-collision contribution to the double ionization probability can be
calculated with any method available for electron impact ionization calculations. For example,
Pattard and Burgdörfer [14, 20] used a first-order Born approximation in connection with the
calculation of triple ionization of lithium, which led to satisfying results at high photon
energies but, not surprisingly, failed at lower energies. On the other hand, Schneider et al
[5] have employed classical trajectory Monte Carlo (CTMC) calculations for the description
of the half-collision cross section, which for atomic targets has proven to lead to surprisingly
accurate results over the whole energy range. Therefore, in the following we will adopt their
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approach which, however, has to be adapted to the molecular case which introduces additional
complications, described in detail in the remainder of this section.

The method of Schneider et al as applicable for atoms is described in detail in [6]. Briefly,
the photoelectron is placed at the nucleus (where photoabsorption will take place at least in
the high-energy limit) while the initial conditions for the second electron are chosen according
to an ‘energy restricted’ Wigner distribution. The latter corresponds to the initial-state (i.e.
before the photoabsorption) wavefunction of the electron, restricted, however, to an energy
shell corresponding to an effective one-particle energy according to its initial binding energy
in the atom. As Heller [21] has pointed out, it is in general not a good approximation to naively
replace the exact quantum evolution of the Wigner distribution with its classical counterpart.
Moreover, the restriction of the initial phase-space distribution to a subspace of fixed energy
introduces another severe approximation, so that the success of this method in the case of
helium double ionization is rather remarkable. It seems certainly worthwhile to study this
point in greater detail; however, this is beyond the scope of the present paper.

In the applications to the helium ground [5] and singly excited [16] states treated so
far, this prescription was sufficient to specify the initial conditions for the calculation of the
half-collision contribution to the double ionization cross section. This is due to the fact that
only s-states are involved in these cases, i.e. the initial electronic wavefunctions are spherically
symmetric. Hence, the anisotropic emission pattern of the photoelectron plays no role for the
calculation of the half-collision since all emission angles of the photoelectron with respect to
the photon polarization axis give equal contributions to the ratio of double to single ionization.
This situation changes when other, non-spherically-symmetric excited atomic states (such as,
e.g., 1s2p) are considered or generally in molecules, where the molecular axis introduces a
breaking of the spherical symmetry. In this case, not only the photoabsorption in the first place,
but also the energy transfer from photoelectron to secondary electron through the half-collision
will depend on the orientation of the molecular axis with respect to the photon polarization
axis, and a suitable averaging has to be performed.

In principle, one could lift the PEAK approximation (i.e. the assumption that the
photoelectron takes off from the nucleus) employed by Schneider et al and choose initial
conditions according to the full two-electron Wigner distribution, only restricted to the final-
state (total) energy shell. However, this means that, for a fixed direction of the molecular axis
with respect to the photon polarization direction, an 11-dimensional phase-space integral has
to be evaluated, which then in addition will have to be averaged over all molecular orientations.
Thus, the high-dimensionality of the corresponding phase space makes this straightforward
approach prohibitively expensive in terms of the required numerical effort. We thus chose
to retain as many of the additional simplifications introduced by Schneider et al as possible.
More precisely, the procedure adopted for the calculation of the half-collision process is the
following: we represent the initial (ground) state of the hydrogen molecule by a product of
two H+

2-LCAO wavefunctions

ψi(r, r) = 1√
N

(φA(r) + φB(r))(φA(r) + φB(r))

≡ φ(r)φ(r), (18)

where φA/B is a hydrogenic 1s wavefunction with an effective nuclear charge Zeff = 1.194
(this choice of Zeff minimizes the variational groundstate energy) centred around RA/B , the
position of the nuclei. We further assume that electron 1 will be the photoelectron and electron 2
will be the remaining one. The opposite case where electron 2 absorbs the photon leads to
identical matrix elements, hence a correct symmetrization only leads to a constant factor in all
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transition probabilities which drops out when the ratio of double ionization to photoabsorption
is considered. Following the argument and notation of [15], we can then consider

ψabs(r, r) =
(
∂z1ψi

)
√〈(

∂z1ψi

)∣∣(∂z1ψi

)〉 (19)

as the wavefunction after the molecule has absorbed the photon (which assumes that the dipole
approximation has been employed for the photon and that the photon is linearly polarized in
the z direction). This wavefunction serves as the input for the two-electron Wigner distribution
which determines the weights of the classical trajectories leading to single or double ionization,
respectively.

First of all, with

ψabs(r, r) ∝ (
∂z1φ(r)

)
φ(r) ≡ φabs(r)φ(r) (20)

we note that the Wigner function for the two-electron wavefunction after photoabsorption
factorizes:

Wabs(r, p, r, p)=
∫

dη dη ψ∗
abs

(
r − η

2
, r − η

2

)
ψabs

(
r +

η

2
, r +

η

2

)
ei(p·η+p·η)

≡ wabs(r, p)w(r, p). (21)

As we employ the PEAK approximation, the initial r is fixed to be either RA or RB; the
absolute value of the corresponding momentum is infinite, but in regularized coordinates
[6] it is fixed by the total energy of the system. Hence, we are only interested in the angular
distribution P

(
θp

, φp

)
with which electron 1 leaves one of the nuclei. Since wabs(r, p) → 0

as r → RA/B and |p| → ∞, we cannot simply extract the angular distribution directly from
the Wigner function. Thus, we are forced to relax the PEAK approximation when calculating
P

(
θp

, φp

)
. From the well-known property of the Wigner function that integrating over the

spatial coordinate yields the quantum-mechanical probability distribution for the momentum,
the full4 probability distribution for p,

Pfull
(
p1, θp

, φp

)
:=

∫
wabs(r, p) dr = |φ̃abs(p)|2, (22)

is simply given by the Fourier transform of φabs,

φ̃abs(p) ∝ 〈exp(ipr)|∂z1 |φ(r)〉. (23)

φ̃abs(p) can be analytically calculated, so that we finally get

Pfull
(
p1, θp

, φp

) ∝ |φ̃0(p1)p1 cos θp
2 cos(p · (RA − RB)/2)|2 (24)

with φ̃0 the momentum-space wavefunction of the hydrogenic groundstate. The only
remaining question is which value of p1 should be used in order to extract P

(
θp

, φp

)
.

Since φ̃abs(p) is a projection of φabs(r) onto plane waves, |φ̃abs|2 can also be understood
as the probability for the photoelectron to acquire a momentum p after photoabsorption if
there were no interaction with the nuclei and the second electron in the final state. Hence, in
determining the angular distribution of the photoelectron,

P
(
θp

, φp

) ∝ Pfull
(
p1, θp

, φp

)∣∣
p1=p∗

1 (Eph)
, (25)

we choose p∗
1(Eph) = √

2(Eb/2 + Eph) which is the asymptotic momentum of an electron
with an initial binding energy that is half of Eb = −51.08 eV, the total electronic binding
energy.

4 One may argue that this should lead to an at least equally appropriate estimate of the ‘true’ angular distribution at
finite excess energies, since the PEAK approximation is only employed for numerical convenience and the electron
may come from any point in space.
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The remaining distribution for r and p is more straightforward. Here, we can directly
take w(r, p), with the only constraint being E2 = Eb/2, i.e. restricted to a one-particle
energy shell as in [5]. E2 is taken to be

E2(r, p) = p
2

2
− 1

|r − RA| − 1

|r − RB| +
∫ |φ(r)|2

|r − r| dr, (26)

i.e. the interaction with the first electron is included on a mean-field level.
Finally, one has to take into account that the probability for photoabsorption depends on

the angle between the molecular axis and the polarization direction as (1 + βm(Eph)P2(ε · R̂))

with an energy-dependent beta parameter βm which we take as external input [22]. Summing
everything up, the weight function for our classical ensemble reads

P
(
θp

, φp
, r, p, R̂

) = (1 + βm(Eph)P2(ε · R̂))P
(
θp

, φp

)
w(r, p)δ(E2 − Eb/2). (27)

The probability for a certain final state where the first electron has an energy E
f

1 and the
second electron has an energy E

f

2 (we can unambiguously assign energies to both electrons
in the final state since there the interaction between them is zero in the case of single as well
as double ionization) is finally given by

p
(
E

f

1 , E
f

2

) = 1

2

∫
P

(
θp

, φp
, r, p, R̂

)
(δ(r − RA) + δ(r − RB))δ

(
E

f

1 − E1
(
r

f , p
f
))

× δ
(
E

f

2 − E2
(
r

f , p
f
))

δ
(
Eb + Eph − E

f

1 − E
f

2

)
dr dp dr dp dR̂. (28)

3. Results

3.1. Shake-off

The asymptotic shake-off value has been calculated using equation (2) with Õc and Ñ , as
derived in the previous section. The overlap matrix elements are conveniently calculated in
prolate spheroidal coordinates λ = (|r − RA| + |r − RB|)/|RA − RB|, µ = (|r − RA| −
|r − RB|)/|RA − RB|. For the groundstate wavefunction ψi , we use the correlated
wavefunction given in [23]. The final-state wavefunctions φf have been calculated by
numerically solving the eigenvalue problem, which is separable in prolate spheroidal
coordinates. Bound as well as continuum states have been obtained, where the continuum
has been discretized via box-quantization, i.e. by restricting λ < λmax and requiring Dirichlet
boundary conditions at λmax. The box size was varied to ensure convergence of the result.
Moreover, the lowest bound states have been compared to the wavefunctions tabulated in
the literature [24], showing good agreement of the overlap matrix elements. Our results are
summarized in table 1, which shows the probability that the secondary electron is shaken into
the final state φnµ,nλ

,

Pnµ,nλ
=

(∣∣〈φnµ,nλ

∣∣ψiA

〉∣∣2
+

∣∣〈φnµ,nλ

∣∣ψiB

〉∣∣2)
(〈ψiA|ψiA〉 + 〈ψiB |ψiB〉) , (29)

where nµ and nλ are the number of nodes in the µ- and λ-wavefunction, respectively (as
noted in [12], only sigma-states with m = 0 produce nonvanishing overlap matrix elements,
hence we omit the quantum number labelling the projection of the angular momentum on
the internuclear axis in labelling the final ionic states). Taking into account final states up
to nµ = 5, the probability to be shaken into a continuum state is found to be 7.015 × 10−3,
making the asymptotic double-to-single ionization ratio R = σ 2+/σ + = 7.065×10−3. This is
in contrast to the result of [12], which was given as R = 0.0225. On the other hand, comparing
the shake probabilities for individual states, the present results closely match those of [12].
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Table 1. Shake probabilities into some selected final states, nµ and nλ are the number of nodes in
the µ- and λ-wavefunction, respectively.

nµ nλ Pnµ,nλ
nµ nλ Pnµ,nλ

nµ nλ Pnµ,nλ

0 0 0.930 79 1 0 1.46 × 10−2 2 0 3.27 × 10−6

0 1 3.97 × 10−2 1 1 9.97 × 10−4 2 1 4.49 × 10−7

0 2 3.61 × 10−3 1 2 2.64 × 10−4 2 2 1.61 × 10−7

0 3 1.14 × 10−3 1 3 1.12 × 10−4 2 3 7.98 × 10−8

0 4 5.18 × 10−4 1 4 5.88 × 10−5 2 4 4.65 × 10−8

0 5 2.83 × 10−4 1 5 3.50 × 10−5 2 5 2.98 × 10−8

0 6 1.72 × 10−4 1 6 2.26 × 10−5 2 6 2.03 × 10−8

0 7 1.13 × 10−4 1 7 1.54 × 10−5 2 7 1.45 × 10−8

0 8 7.87 × 10−5 1 8 1.11 × 10−6 2 8 1.07 × 10−8

0 9 5.69 × 10−5 1 9 8.19 × 10−6 2 9 8.21 × 10−9

∑
bnd 0.976 76

∑
bnd 1.62 × 10−2 ∑

bnd 4.13 × 10−6∑
cont 5.50 × 10−3 ∑

cont 1.42 × 10−3 ∑
cont 9.25 × 10−5

The discrepancy between the final results can be traced to the fact that the authors of [12] argue
that only gerade states of H+

2 can be populated in the final state. However, this is not the case
in the incoherent sum of transition probabilities derived in the previous section (equation 14).
Mathematically, this is seen from equation (11), where the interference term depends on
the direction of k, i.e. of the outgoing photoelectron. Physically, it means that the initial
symmetry of the full two-electron problem does not allow conclusions about the symmetry
of the restricted one-electron system since the plane wave of the outgoing photoelectron does
not have a well-defined parity.

Including final states up to nµ = 5, we find the sum of all individual probabilities Pnµ,nλ

to add up to 0.999 9917. In principle, of course, the sum over all final states has to add up to 1.
Hence, we conclude that the numerical error of our calculation should be no larger than 10−4.
Moreover, we suggest that the result of [12] is incorrect due to the omission of the ungerade-
type final states. There, R has been obtained in an indirect way by exploiting a completeness
argument and expressing Pcont as 1 − Pbound; however, from the present calculation it is
clear that the calculated values for the (bound plus continuum) gerade states only do not add
up to 1.

At this point, it is worthwhile to compare the H2 shake-off limit to that of He, i.e. to that of
the corresponding atomic two-electron system. For He, R has been found to be 0.0164, which
is significantly larger than the present value for H2. This seems plausible in view of the fact
that it is the correlation in the initial two-electron state which is responsible for the shake-off
process. For a molecule, the electronic clouds are more delocalized since they are localized
on two spatially separated nuclei. Hence, one might intuitively expect less electron–electron
correlation in the molecular groundstate than in the atomic groundstate, leading to a smaller
change in the effective one-electron potential for the secondary electron once the photoelectron
is removed, thus leading to a smaller probability for shake-off.

While shake-off is well defined in the asymptotic high-energy limit, its meaning at finite
energies is less clear and has been the subject of debate recently [15, and references therein].
In [15], it was argued that a satisfactory ‘operational’ definition of shake-off at a finite energy
E is the one introduced in [5], namely

P
(1)
f (E) = P

(1)
f (∞)θ

(
E − E

f

1

)
, (30)
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Figure 1. Energy dependence of the shake-off contribution to the cross section ratio σ 2+/σ +. The
full curve shows the present calculation for H2, the dashed curve the corresponding result for He.
The open circles are a scaled version of the H2 data (see the text for explanation). Finally, the
arrow marks the asymptotic high-energy limit.

where P
(1)
f (∞) is the asymptotic shake-off probability for reaching a final state φf ,E

f

1 is the

energy of the final state φf and θ is the unit step function. In the present case, P
(1)
f (∞) is

given by equation (14). However, in contrast to the atomic case considered previously, the
derivation of equation (14) requires the limit of high photon energies not only in justifying
that photoabsorption takes place at one of the nuclei, but also in order to omit the interference
term in the transition probability which is still present in equation (11). Hence, one may
argue that this interference term should be taken into account for the calculation of shake-off
probabilities at finite energies. Doing so leads to oscillations in the shake-off double-to-single
ionization ratio R superimposed on the smooth behaviour given by equation (30) and depicted
in figure 1. However, we argue that these oscillations would be an artefact of an inconsistent
use of the limit k → ∞ for the momentum k of the photoelectron. Use of equation (11) for
finite energies leads, e.g., to the same divergencies for k → 0 as equation (14) due to the
1/k5 prefactor, hence it cannot be attributed a rigorous meaning beyond the limit k → ∞ in
which it was derived. Hence, we use equation (30) for the calculation of shake-off at finite
energies. A more consistent description omitting the limit k → ∞ could only be achieved
by calculating two-electron overlap integrals, i.e. going back to equation (14) of [15]. In this
case, we believe that oscillations due to interferences would probably be washed out in the
total cross section due to the averaging over k involved in the integration over final states.

The energy dependence of the shake-off contribution to the cross section ratio resulting
from equation (30) is shown in figure 1, where it is also compared to the corresponding
curve for He. Coming from the high-energy limit, the shake-off probability stays almost
constant down to about 50 eV excess energy, below which it rapidly drops down. (The
excess energy E = Eph − I 2+(R0) is the difference between the photon energy and the double
ionization potential for a fixed internuclear distance R0 corresponding to the H2 groundstate.)
Compared to He, this decay happens on a significantly smaller energy scale, in other words,
the shake-off probability approaches its asymptotic value already at smaller excess energies.
The open circles in figure 1 show a scaled version of the H2 data, obtained by the similarity
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Figure 2. Knockout probability (solid line, this work) and experimental electron impact ionization
cross section of H+

2 (diamonds, from [25]) as a function of the impact energy scaled by the binding
energy (see text). In order to compare the knockout probability calculated here to the cross section
measured experimentally, the latter has been normalized by a constant factor.

transformation R → R ×RHe
∞

/
RH2∞ , E → 1.9 ×E. As can be seen, the shape of the H2 curve

closely matches that of the He case if both axes are scaled appropriately. The scaling of the
absolute magnitude of R, as discussed above, should represent the amount of electron-electron
correlation in the initial state. The scaling factor for the energy axis has been set ‘by hand’
to obtain a good visual fit to the He data. Usually, ionization cross sections roughly scale
with the corresponding binding energy of the initial state. In the present case such a simple
argument does not explain the scaling factor, which may not be too surprising since the shape
of the electronic clouds is different in the molecular and atomic case, respectively, so that a
simple scaling based on, e.g., effective charges cannot be applied. We have not been able to
find a straightforward explanation for the energy scaling factor of about 1.9. Nevertheless, the
great similarity of the shape of the shake-off probability for the two cases seems remarkable,
and it seems unlikely that this similarity is just by accident.

3.2. Half-collision

For each photon energy Eph, 106 trajectories were calculated and p
(
E

f

1 , E
f

2

)
(equation (28))

was added to p+ or p2+, respectively. The resulting P2+ ≡ p2+/(p+ + p2+) ≡ σ 2+/(σ + + σ 2+)

is shown in figure 2 as a function of the scaled ‘impact’ energy of the system, defined as
εimp = Eimp/Ebind. (The scaling of energies by the binding energy of the ‘target’ system
has been introduced in [6] to account for the fact that cross sections typically scale with this
binding energy, which is different in the case of electron impact ionization and half-collision
due to partial screening of the electron–nucleus interaction in the latter case.) Within the
half-collision picture, the ‘impact energy’ Eimp for H2 photoionization is the photon energy
minus the binding energy Ei

1 of the primary electron, while Ebind is the binding energy
Ei

2 of the secondary electron. Assuming equivalent electrons in the H2 groundstate, we
set Ei

1 = Ei
2 = Eb/2. Then, from the idea of the half-collision picture, P2+ should be

proportional to the electron impact single ionization cross section of the H+
2 ion. The latter

has recently been measured experimentally [25], and has also been calculated numerically
[26]. Both the experiment and the numerical results agree well with the earlier measurement
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Figure 3. Single-photon double ionization of H2: ratio of double ionization to total
photoabsorption. Shown are the shake-off (dot-dashed curve) and knockout (dashed) contributions,
as well as the incoherent sum of both (solid curve). Solid symbols with error bars are experimental
results from [10] (circles) and [11] (diamonds), connected open symbols show recent calculations
from [2] (squares) and [3, velocity gauge result] (stars). For [2, 3, 11], we have divided their double
ionization cross sections by the photoabsorption cross section given in [10] in order to obtain the
ratio. Note that this may introduce an additional error in these data.

of Peart and Dolder [27], showing the maximum of the ionization cross section at an excess
energy of roughly 70 eV. The experimental results from [25] have been included in figure 2
with the energy of the impacting electron scaled by the binding energy of the target electron,
Ebind = 29.97 eV. The similarity between the two curves is striking, especially if one considers
the fact that not only the binding energies of the two targets are different (this part has been
approximately taken into account by using the scaled energy) but also the internuclear distances
of H+

2 in the electron impact ionization experiment and of the ‘target’ H2 in the half-collision
process, where one of the electrons plays the role of the projectile, are not identical. At very
small energies, discrepancies between the two cases can be observed, where the experiment
shows a significant amount of ionization below the ‘threshold’ energy εimp = 1. This may
to a small extent be attributed to the role of nuclear motion at these low energies, since
Ebind = 29.97 eV is the binding energy for fixed internuclear distance and the ‘real’ threshold
energy is obtained by taking into account the Coulomb repulsion between the nuclei. However,
since the nuclei are so much heavier than the electrons, their motion should only play a role
very close to threshold. More likely, the high cross section at these low energies comes from
the distribution of vibrational states (equivalent to a distribution of binding energies) which
has been used in the experiment [25]. The distribution of vibrational states extended up to
ν = 11, which can shift the energetic difference between the potential curves in the electronic
ground state and in the Coulomb explosion channel by more than 10 eV.

3.3. Double ionization

In figure 3, we show the ratio of double ionization to total photoabsorption, calculated by
using the incoherent sum of the shake-off and knockout contribution as discussed above. The
results of the experiments [10, 11] are also included in the figure, as well as the two recent
calculations [2, 3]. Both sets of experimental data suffer from large error bars and the fact
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that the available photon energies were not high enough to obtain data beyond the maximum
of the ratio around 80 eV. Our results are systematically lower than the experimental data
of Kossmann et al, and significantly lower than those of Dujardin et al, but well within the
error bars of at least the former experiment. Compared to the ab initio calculations, our
findings again indicate a somewhat lower ratio than it has been found in [2, 3]. Also in these
theoretical calculations, however, the photon energy has not been extended to large enough
values to compare characteristic properties of the shape of the ratio like the maximum or the
high-energy limit. As our data suggest, both shake-off and knockout double ionization are
smaller than in the corresponding atomic system helium, which might be attributed to the
fact that the two-centre nature of the molecular groundstate leads to less strongly correlated
electrons. Moreover, we would predict that double ionization is dominated by collision-type
processes up to at least 500 eV excess energy, in contrast to helium where both mechanisms are
comparable around 200 eV and shake-off becomes the dominant process already around 300 eV
above threshold. We may speculate that this is again an evidence for the smaller amount of
correlation in the molecular groundstate, since this strong correlation is more important for
shake processes than for collision processes. The latter can still be relatively efficient in
ionizing the secondary electron, even if the photoelectron ‘misses’ the second electron in half
of its outgoing trajectories.

In view of the scarcity of experimental as well as theoretical results covering a rather
small energy range, and given the fact that the experimental data have been obtained more
than 15 years ago, a judgement of the quality of our calculations is difficult. In the high-energy
limit, where the knockout contribution goes to zero and the shake-off approximation becomes
exact, our calculations can be expected to become exact. For low to intermediate photon
energies, it is not a priori clear whether our method, which was empirically shown to work
very well for two-electron atoms, still gives good results in the molecular case. To answer
this question has been part of the motivation for this paper. Certainly, a comparison of our
results with the available data shows a satisfying agreement, given the relative simplicity of
the calculation and the underlying physical picture. In order to say more (e.g., concerning the
incoherent summation of shake-off and knockout employed in our model) further experiments
and calculations on this benchmark molecular system have to be performed, especially at
higher energies where our calculation provides the first data obtained so far. New experiments
are planned in the near future in the group of Dörner [28], which, due to the advances in
experimental technologies in recent years, can be expected to yield results with significantly
smaller error bars than the data shown here. Hopefully, the present work together with the
prospect of new experiments will also stimulate further theoretical work. Until such new
results become available, the predictions made by our model concerning the position of the
maximum and the shake-off limit await verification.

4. Conclusions and outlook

In the present work we have formulated a mixed quantum-classical approach for the calculation
of single-photon double ionization of diatomic molecules. Applying this approach to molecular
hydrogen, we have analysed the role of shake-off and knockout, respectively, in molecular
photoionization. We could show that both are smaller in H2 than in helium, which may be
attributed to smaller electron–electron correlation in the molecular groundstate. The knockout
process can be well described by a half-collision process, as indicated by the proportionality
of the knockout probability to the cross section for electron impact ionization of H+

2. The
incoherent summation of shake-off and knockout yields satisfactory agreement with the
available theoretical and experimental data. Moreover, the current work provides the first
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data for the double ionization cross section at energies above the cross section maximum.
Overall, the approach presented here can be considered a valuable alternative to much more
involved ab initio calculations of molecular double photoionization.

A natural extension of the present work would be to calculate angular differential cross
sections, where the amount of available data is larger than for the total cross section, and
the validity of our model would be put to a much more severe test. Unfortunately, the
number of trajectories that is needed in order to get converged results for angular differential
cross sections is easily one order of magnitude higher than in the present work, so that such
calculations will have to be part of future investigations. Still, we hope that the present
work will stimulate further experimental and theoretical investigations on this most simple
molecular target system.
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